The most powerful and modular stable diffusion GUI, api and backend with a graph/nodes interface.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

117 lines
5.0 KiB

from transformers import CLIPVisionModelWithProjection, CLIPVisionConfig, modeling_utils
from .utils import load_torch_file, transformers_convert, common_upscale
import os
import torch
import contextlib
import comfy.ops
import comfy.model_patcher
import comfy.model_management
import comfy.utils
def clip_preprocess(image, size=224):
mean = torch.tensor([ 0.48145466,0.4578275,0.40821073], device=image.device, dtype=image.dtype)
std = torch.tensor([0.26862954,0.26130258,0.27577711], device=image.device, dtype=image.dtype)
scale = (size / min(image.shape[1], image.shape[2]))
image = torch.nn.functional.interpolate(image.movedim(-1, 1), size=(round(scale * image.shape[1]), round(scale * image.shape[2])), mode="bicubic", antialias=True)
h = (image.shape[2] - size)//2
w = (image.shape[3] - size)//2
image = image[:,:,h:h+size,w:w+size]
image = torch.clip((255. * image), 0, 255).round() / 255.0
return (image - mean.view([3,1,1])) / std.view([3,1,1])
class ClipVisionModel():
def __init__(self, json_config):
config = CLIPVisionConfig.from_json_file(json_config)
self.load_device = comfy.model_management.text_encoder_device()
offload_device = comfy.model_management.text_encoder_offload_device()
self.dtype = torch.float32
if comfy.model_management.should_use_fp16(self.load_device, prioritize_performance=False):
self.dtype = torch.float16
with comfy.ops.use_comfy_ops(offload_device, self.dtype):
with modeling_utils.no_init_weights():
self.model = CLIPVisionModelWithProjection(config)
self.model.to(self.dtype)
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
def load_sd(self, sd):
return self.model.load_state_dict(sd, strict=False)
def encode_image(self, image):
comfy.model_management.load_model_gpu(self.patcher)
pixel_values = clip_preprocess(image.to(self.load_device))
if self.dtype != torch.float32:
precision_scope = torch.autocast
else:
precision_scope = lambda a, b: contextlib.nullcontext(a)
with precision_scope(comfy.model_management.get_autocast_device(self.load_device), torch.float32):
outputs = self.model(pixel_values=pixel_values, output_hidden_states=True)
for k in outputs:
t = outputs[k]
if t is not None:
if k == 'hidden_states':
outputs["penultimate_hidden_states"] = t[-2].cpu()
outputs["hidden_states"] = None
else:
outputs[k] = t.cpu()
return outputs
def convert_to_transformers(sd, prefix):
sd_k = sd.keys()
if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k:
keys_to_replace = {
"{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding",
"{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight",
"{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight",
"{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias",
"{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight",
"{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias",
"{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight",
}
for x in keys_to_replace:
if x in sd_k:
sd[keys_to_replace[x]] = sd.pop(x)
if "{}proj".format(prefix) in sd_k:
sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1)
sd = transformers_convert(sd, prefix, "vision_model.", 48)
return sd
def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
if convert_keys:
sd = convert_to_transformers(sd, prefix)
if "vision_model.encoder.layers.47.layer_norm1.weight" in sd:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_g.json")
elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
else:
return None
clip = ClipVisionModel(json_config)
m, u = clip.load_sd(sd)
if len(m) > 0:
print("missing clip vision:", m)
u = set(u)
keys = list(sd.keys())
for k in keys:
if k not in u:
t = sd.pop(k)
del t
return clip
def load(ckpt_path):
sd = load_torch_file(ckpt_path)
if "visual.transformer.resblocks.0.attn.in_proj_weight" in sd:
return load_clipvision_from_sd(sd, prefix="visual.", convert_keys=True)
else:
return load_clipvision_from_sd(sd)