|
|
|
import torch
|
|
|
|
import nodes
|
|
|
|
import comfy.utils
|
|
|
|
|
|
|
|
def camera_embeddings(elevation, azimuth):
|
|
|
|
elevation = torch.as_tensor([elevation])
|
|
|
|
azimuth = torch.as_tensor([azimuth])
|
|
|
|
embeddings = torch.stack(
|
|
|
|
[
|
|
|
|
torch.deg2rad(
|
|
|
|
(90 - elevation) - (90)
|
|
|
|
), # Zero123 polar is 90-elevation
|
|
|
|
torch.sin(torch.deg2rad(azimuth)),
|
|
|
|
torch.cos(torch.deg2rad(azimuth)),
|
|
|
|
torch.deg2rad(
|
|
|
|
90 - torch.full_like(elevation, 0)
|
|
|
|
),
|
|
|
|
], dim=-1).unsqueeze(1)
|
|
|
|
|
|
|
|
return embeddings
|
|
|
|
|
|
|
|
|
|
|
|
class StableZero123_Conditioning:
|
|
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
|
|
return {"required": { "clip_vision": ("CLIP_VISION",),
|
|
|
|
"init_image": ("IMAGE",),
|
|
|
|
"vae": ("VAE",),
|
|
|
|
"width": ("INT", {"default": 256, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
|
|
|
|
"height": ("INT", {"default": 256, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
|
|
|
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
|
|
|
|
"elevation": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
|
|
|
|
"azimuth": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
|
|
|
|
}}
|
|
|
|
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
|
|
|
|
RETURN_NAMES = ("positive", "negative", "latent")
|
|
|
|
|
|
|
|
FUNCTION = "encode"
|
|
|
|
|
|
|
|
CATEGORY = "conditioning/3d_models"
|
|
|
|
|
|
|
|
def encode(self, clip_vision, init_image, vae, width, height, batch_size, elevation, azimuth):
|
|
|
|
output = clip_vision.encode_image(init_image)
|
|
|
|
pooled = output.image_embeds.unsqueeze(0)
|
|
|
|
pixels = comfy.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1)
|
|
|
|
encode_pixels = pixels[:,:,:,:3]
|
|
|
|
t = vae.encode(encode_pixels)
|
|
|
|
cam_embeds = camera_embeddings(elevation, azimuth)
|
|
|
|
cond = torch.cat([pooled, cam_embeds.repeat((pooled.shape[0], 1, 1))], dim=-1)
|
|
|
|
|
|
|
|
positive = [[cond, {"concat_latent_image": t}]]
|
|
|
|
negative = [[torch.zeros_like(pooled), {"concat_latent_image": torch.zeros_like(t)}]]
|
|
|
|
latent = torch.zeros([batch_size, 4, height // 8, width // 8])
|
|
|
|
return (positive, negative, {"samples":latent})
|
|
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
|
|
"StableZero123_Conditioning": StableZero123_Conditioning,
|
|
|
|
}
|