You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
22 lines
753 B
22 lines
753 B
2 years ago
|
import torch
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
def append_dims(x, target_dims):
|
||
|
"""Appends dimensions to the end of a tensor until it has target_dims dimensions.
|
||
|
From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py"""
|
||
|
dims_to_append = target_dims - x.ndim
|
||
|
if dims_to_append < 0:
|
||
|
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
|
||
|
return x[(...,) + (None,) * dims_to_append]
|
||
|
|
||
|
|
||
|
def norm_thresholding(x0, value):
|
||
|
s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim)
|
||
|
return x0 * (value / s)
|
||
|
|
||
|
|
||
|
def spatial_norm_thresholding(x0, value):
|
||
|
# b c h w
|
||
|
s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value)
|
||
|
return x0 * (value / s)
|