|
|
|
import torch
|
|
|
|
from PIL import Image, ImageOps
|
|
|
|
from io import BytesIO
|
|
|
|
import struct
|
|
|
|
import numpy as np
|
|
|
|
from comfy.cli_args import args, LatentPreviewMethod
|
|
|
|
from comfy.taesd.taesd import TAESD
|
|
|
|
import folder_paths
|
|
|
|
|
|
|
|
MAX_PREVIEW_RESOLUTION = 512
|
|
|
|
|
|
|
|
class LatentPreviewer:
|
|
|
|
def decode_latent_to_preview(self, x0):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def decode_latent_to_preview_image(self, preview_format, x0):
|
|
|
|
preview_image = self.decode_latent_to_preview(x0)
|
|
|
|
|
|
|
|
if hasattr(Image, 'Resampling'):
|
|
|
|
resampling = Image.Resampling.BILINEAR
|
|
|
|
else:
|
|
|
|
resampling = Image.ANTIALIAS
|
|
|
|
|
|
|
|
preview_image = ImageOps.contain(preview_image, (MAX_PREVIEW_RESOLUTION, MAX_PREVIEW_RESOLUTION), resampling)
|
|
|
|
|
|
|
|
preview_type = 1
|
|
|
|
if preview_format == "JPEG":
|
|
|
|
preview_type = 1
|
|
|
|
elif preview_format == "PNG":
|
|
|
|
preview_type = 2
|
|
|
|
|
|
|
|
bytesIO = BytesIO()
|
|
|
|
header = struct.pack(">I", preview_type)
|
|
|
|
bytesIO.write(header)
|
|
|
|
preview_image.save(bytesIO, format=preview_format, quality=95)
|
|
|
|
preview_bytes = bytesIO.getvalue()
|
|
|
|
return preview_bytes
|
|
|
|
|
|
|
|
class TAESDPreviewerImpl(LatentPreviewer):
|
|
|
|
def __init__(self, taesd):
|
|
|
|
self.taesd = taesd
|
|
|
|
|
|
|
|
def decode_latent_to_preview(self, x0):
|
|
|
|
x_sample = self.taesd.decoder(x0)[0].detach()
|
|
|
|
# x_sample = self.taesd.unscale_latents(x_sample).div(4).add(0.5) # returns value in [-2, 2]
|
|
|
|
x_sample = x_sample.sub(0.5).mul(2)
|
|
|
|
|
|
|
|
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
|
|
|
|
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
|
|
|
x_sample = x_sample.astype(np.uint8)
|
|
|
|
|
|
|
|
preview_image = Image.fromarray(x_sample)
|
|
|
|
return preview_image
|
|
|
|
|
|
|
|
|
|
|
|
class Latent2RGBPreviewer(LatentPreviewer):
|
|
|
|
def __init__(self, latent_rgb_factors):
|
|
|
|
self.latent_rgb_factors = torch.tensor(latent_rgb_factors, device="cpu")
|
|
|
|
|
|
|
|
def decode_latent_to_preview(self, x0):
|
|
|
|
latent_image = x0[0].permute(1, 2, 0).cpu() @ self.latent_rgb_factors
|
|
|
|
|
|
|
|
latents_ubyte = (((latent_image + 1) / 2)
|
|
|
|
.clamp(0, 1) # change scale from -1..1 to 0..1
|
|
|
|
.mul(0xFF) # to 0..255
|
|
|
|
.byte()).cpu()
|
|
|
|
|
|
|
|
return Image.fromarray(latents_ubyte.numpy())
|
|
|
|
|
|
|
|
|
|
|
|
def get_previewer(device, latent_format):
|
|
|
|
previewer = None
|
|
|
|
method = args.preview_method
|
|
|
|
if method != LatentPreviewMethod.NoPreviews:
|
|
|
|
# TODO previewer methods
|
|
|
|
taesd_decoder_path = folder_paths.get_full_path("vae_approx", latent_format.taesd_decoder_name)
|
|
|
|
|
|
|
|
if method == LatentPreviewMethod.Auto:
|
|
|
|
method = LatentPreviewMethod.Latent2RGB
|
|
|
|
if taesd_decoder_path:
|
|
|
|
method = LatentPreviewMethod.TAESD
|
|
|
|
|
|
|
|
if method == LatentPreviewMethod.TAESD:
|
|
|
|
if taesd_decoder_path:
|
|
|
|
taesd = TAESD(None, taesd_decoder_path).to(device)
|
|
|
|
previewer = TAESDPreviewerImpl(taesd)
|
|
|
|
else:
|
|
|
|
print("Warning: TAESD previews enabled, but could not find models/vae_approx/{}".format(latent_format.taesd_decoder_name))
|
|
|
|
|
|
|
|
if previewer is None:
|
|
|
|
previewer = Latent2RGBPreviewer(latent_format.latent_rgb_factors)
|
|
|
|
return previewer
|
|
|
|
|
|
|
|
|