|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
import torch.nn.functional as F
|
|
|
|
from PIL import Image
|
|
|
|
import math
|
|
|
|
|
|
|
|
import comfy.utils
|
|
|
|
|
|
|
|
|
|
|
|
class Blend:
|
|
|
|
def __init__(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
|
|
return {
|
|
|
|
"required": {
|
|
|
|
"image1": ("IMAGE",),
|
|
|
|
"image2": ("IMAGE",),
|
|
|
|
"blend_factor": ("FLOAT", {
|
|
|
|
"default": 0.5,
|
|
|
|
"min": 0.0,
|
|
|
|
"max": 1.0,
|
|
|
|
"step": 0.01
|
|
|
|
}),
|
|
|
|
"blend_mode": (["normal", "multiply", "screen", "overlay", "soft_light", "difference"],),
|
|
|
|
},
|
|
|
|
}
|
|
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
|
FUNCTION = "blend_images"
|
|
|
|
|
|
|
|
CATEGORY = "image/postprocessing"
|
|
|
|
|
|
|
|
def blend_images(self, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str):
|
|
|
|
image2 = image2.to(image1.device)
|
|
|
|
if image1.shape != image2.shape:
|
|
|
|
image2 = image2.permute(0, 3, 1, 2)
|
|
|
|
image2 = comfy.utils.common_upscale(image2, image1.shape[2], image1.shape[1], upscale_method='bicubic', crop='center')
|
|
|
|
image2 = image2.permute(0, 2, 3, 1)
|
|
|
|
|
|
|
|
blended_image = self.blend_mode(image1, image2, blend_mode)
|
|
|
|
blended_image = image1 * (1 - blend_factor) + blended_image * blend_factor
|
|
|
|
blended_image = torch.clamp(blended_image, 0, 1)
|
|
|
|
return (blended_image,)
|
|
|
|
|
|
|
|
def blend_mode(self, img1, img2, mode):
|
|
|
|
if mode == "normal":
|
|
|
|
return img2
|
|
|
|
elif mode == "multiply":
|
|
|
|
return img1 * img2
|
|
|
|
elif mode == "screen":
|
|
|
|
return 1 - (1 - img1) * (1 - img2)
|
|
|
|
elif mode == "overlay":
|
|
|
|
return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2))
|
|
|
|
elif mode == "soft_light":
|
|
|
|
return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1), img1 + (2 * img2 - 1) * (self.g(img1) - img1))
|
|
|
|
elif mode == "difference":
|
|
|
|
return img1 - img2
|
|
|
|
else:
|
|
|
|
raise ValueError(f"Unsupported blend mode: {mode}")
|
|
|
|
|
|
|
|
def g(self, x):
|
|
|
|
return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x))
|
|
|
|
|
|
|
|
def gaussian_kernel(kernel_size: int, sigma: float, device=None):
|
|
|
|
x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size, device=device), torch.linspace(-1, 1, kernel_size, device=device), indexing="ij")
|
|
|
|
d = torch.sqrt(x * x + y * y)
|
|
|
|
g = torch.exp(-(d * d) / (2.0 * sigma * sigma))
|
|
|
|
return g / g.sum()
|
|
|
|
|
|
|
|
class Blur:
|
|
|
|
def __init__(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
|
|
return {
|
|
|
|
"required": {
|
|
|
|
"image": ("IMAGE",),
|
|
|
|
"blur_radius": ("INT", {
|
|
|
|
"default": 1,
|
|
|
|
"min": 1,
|
|
|
|
"max": 31,
|
|
|
|
"step": 1
|
|
|
|
}),
|
|
|
|
"sigma": ("FLOAT", {
|
|
|
|
"default": 1.0,
|
|
|
|
"min": 0.1,
|
|
|
|
"max": 10.0,
|
|
|
|
"step": 0.1
|
|
|
|
}),
|
|
|
|
},
|
|
|
|
}
|
|
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
|
FUNCTION = "blur"
|
|
|
|
|
|
|
|
CATEGORY = "image/postprocessing"
|
|
|
|
|
|
|
|
def blur(self, image: torch.Tensor, blur_radius: int, sigma: float):
|
|
|
|
if blur_radius == 0:
|
|
|
|
return (image,)
|
|
|
|
|
|
|
|
batch_size, height, width, channels = image.shape
|
|
|
|
|
|
|
|
kernel_size = blur_radius * 2 + 1
|
|
|
|
kernel = gaussian_kernel(kernel_size, sigma, device=image.device).repeat(channels, 1, 1).unsqueeze(1)
|
|
|
|
|
|
|
|
image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
|
|
|
|
padded_image = F.pad(image, (blur_radius,blur_radius,blur_radius,blur_radius), 'reflect')
|
|
|
|
blurred = F.conv2d(padded_image, kernel, padding=kernel_size // 2, groups=channels)[:,:,blur_radius:-blur_radius, blur_radius:-blur_radius]
|
|
|
|
blurred = blurred.permute(0, 2, 3, 1)
|
|
|
|
|
|
|
|
return (blurred,)
|
|
|
|
|
|
|
|
class Quantize:
|
|
|
|
def __init__(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
|
|
return {
|
|
|
|
"required": {
|
|
|
|
"image": ("IMAGE",),
|
|
|
|
"colors": ("INT", {
|
|
|
|
"default": 256,
|
|
|
|
"min": 1,
|
|
|
|
"max": 256,
|
|
|
|
"step": 1
|
|
|
|
}),
|
|
|
|
"dither": (["none", "floyd-steinberg", "bayer-2", "bayer-4", "bayer-8", "bayer-16"],),
|
|
|
|
},
|
|
|
|
}
|
|
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
|
FUNCTION = "quantize"
|
|
|
|
|
|
|
|
CATEGORY = "image/postprocessing"
|
|
|
|
|
|
|
|
def bayer(im, pal_im, order):
|
|
|
|
def normalized_bayer_matrix(n):
|
|
|
|
if n == 0:
|
|
|
|
return np.zeros((1,1), "float32")
|
|
|
|
else:
|
|
|
|
q = 4 ** n
|
|
|
|
m = q * normalized_bayer_matrix(n - 1)
|
|
|
|
return np.bmat(((m-1.5, m+0.5), (m+1.5, m-0.5))) / q
|
|
|
|
|
|
|
|
num_colors = len(pal_im.getpalette()) // 3
|
|
|
|
spread = 2 * 256 / num_colors
|
|
|
|
bayer_n = int(math.log2(order))
|
|
|
|
bayer_matrix = torch.from_numpy(spread * normalized_bayer_matrix(bayer_n) + 0.5)
|
|
|
|
|
|
|
|
result = torch.from_numpy(np.array(im).astype(np.float32))
|
|
|
|
tw = math.ceil(result.shape[0] / bayer_matrix.shape[0])
|
|
|
|
th = math.ceil(result.shape[1] / bayer_matrix.shape[1])
|
|
|
|
tiled_matrix = bayer_matrix.tile(tw, th).unsqueeze(-1)
|
|
|
|
result.add_(tiled_matrix[:result.shape[0],:result.shape[1]]).clamp_(0, 255)
|
|
|
|
result = result.to(dtype=torch.uint8)
|
|
|
|
|
|
|
|
im = Image.fromarray(result.cpu().numpy())
|
|
|
|
im = im.quantize(palette=pal_im, dither=Image.Dither.NONE)
|
|
|
|
return im
|
|
|
|
|
|
|
|
def quantize(self, image: torch.Tensor, colors: int, dither: str):
|
|
|
|
batch_size, height, width, _ = image.shape
|
|
|
|
result = torch.zeros_like(image)
|
|
|
|
|
|
|
|
for b in range(batch_size):
|
|
|
|
im = Image.fromarray((image[b] * 255).to(torch.uint8).numpy(), mode='RGB')
|
|
|
|
|
|
|
|
pal_im = im.quantize(colors=colors) # Required as described in https://github.com/python-pillow/Pillow/issues/5836
|
|
|
|
|
|
|
|
if dither == "none":
|
|
|
|
quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.NONE)
|
|
|
|
elif dither == "floyd-steinberg":
|
|
|
|
quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.FLOYDSTEINBERG)
|
|
|
|
elif dither.startswith("bayer"):
|
|
|
|
order = int(dither.split('-')[-1])
|
|
|
|
quantized_image = Quantize.bayer(im, pal_im, order)
|
|
|
|
|
|
|
|
quantized_array = torch.tensor(np.array(quantized_image.convert("RGB"))).float() / 255
|
|
|
|
result[b] = quantized_array
|
|
|
|
|
|
|
|
return (result,)
|
|
|
|
|
|
|
|
class Sharpen:
|
|
|
|
def __init__(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
|
|
return {
|
|
|
|
"required": {
|
|
|
|
"image": ("IMAGE",),
|
|
|
|
"sharpen_radius": ("INT", {
|
|
|
|
"default": 1,
|
|
|
|
"min": 1,
|
|
|
|
"max": 31,
|
|
|
|
"step": 1
|
|
|
|
}),
|
|
|
|
"sigma": ("FLOAT", {
|
|
|
|
"default": 1.0,
|
|
|
|
"min": 0.1,
|
|
|
|
"max": 10.0,
|
|
|
|
"step": 0.1
|
|
|
|
}),
|
|
|
|
"alpha": ("FLOAT", {
|
|
|
|
"default": 1.0,
|
|
|
|
"min": 0.0,
|
|
|
|
"max": 5.0,
|
|
|
|
"step": 0.1
|
|
|
|
}),
|
|
|
|
},
|
|
|
|
}
|
|
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
|
FUNCTION = "sharpen"
|
|
|
|
|
|
|
|
CATEGORY = "image/postprocessing"
|
|
|
|
|
|
|
|
def sharpen(self, image: torch.Tensor, sharpen_radius: int, sigma:float, alpha: float):
|
|
|
|
if sharpen_radius == 0:
|
|
|
|
return (image,)
|
|
|
|
|
|
|
|
batch_size, height, width, channels = image.shape
|
|
|
|
|
|
|
|
kernel_size = sharpen_radius * 2 + 1
|
|
|
|
kernel = gaussian_kernel(kernel_size, sigma, device=image.device) * -(alpha*10)
|
|
|
|
center = kernel_size // 2
|
|
|
|
kernel[center, center] = kernel[center, center] - kernel.sum() + 1.0
|
|
|
|
kernel = kernel.repeat(channels, 1, 1).unsqueeze(1)
|
|
|
|
|
|
|
|
tensor_image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
|
|
|
|
tensor_image = F.pad(tensor_image, (sharpen_radius,sharpen_radius,sharpen_radius,sharpen_radius), 'reflect')
|
|
|
|
sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius]
|
|
|
|
sharpened = sharpened.permute(0, 2, 3, 1)
|
|
|
|
|
|
|
|
result = torch.clamp(sharpened, 0, 1)
|
|
|
|
|
|
|
|
return (result,)
|
|
|
|
|
|
|
|
class ImageScaleToTotalPixels:
|
|
|
|
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
|
|
|
|
crop_methods = ["disabled", "center"]
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
|
|
return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
|
|
|
|
"megapixels": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 16.0, "step": 0.01}),
|
|
|
|
}}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
|
FUNCTION = "upscale"
|
|
|
|
|
|
|
|
CATEGORY = "image/upscaling"
|
|
|
|
|
|
|
|
def upscale(self, image, upscale_method, megapixels):
|
|
|
|
samples = image.movedim(-1,1)
|
|
|
|
total = int(megapixels * 1024 * 1024)
|
|
|
|
|
|
|
|
scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2]))
|
|
|
|
width = round(samples.shape[3] * scale_by)
|
|
|
|
height = round(samples.shape[2] * scale_by)
|
|
|
|
|
|
|
|
s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
|
|
|
|
s = s.movedim(1,-1)
|
|
|
|
return (s,)
|
|
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
|
|
"ImageBlend": Blend,
|
|
|
|
"ImageBlur": Blur,
|
|
|
|
"ImageQuantize": Quantize,
|
|
|
|
"ImageSharpen": Sharpen,
|
|
|
|
"ImageScaleToTotalPixels": ImageScaleToTotalPixels,
|
|
|
|
}
|