|
|
|
import torch
|
|
|
|
|
|
|
|
import os
|
|
|
|
import sys
|
|
|
|
import json
|
|
|
|
|
|
|
|
from PIL import Image
|
|
|
|
from PIL.PngImagePlugin import PngInfo
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
sys.path.append(os.path.join(sys.path[0], "comfy"))
|
|
|
|
|
|
|
|
|
|
|
|
import comfy.samplers
|
|
|
|
import comfy.sd
|
|
|
|
|
|
|
|
supported_ckpt_extensions = ['.ckpt']
|
|
|
|
try:
|
|
|
|
import safetensors.torch
|
|
|
|
supported_ckpt_extensions += ['.safetensors']
|
|
|
|
except:
|
|
|
|
print("Could not import safetensors, safetensors support disabled.")
|
|
|
|
|
|
|
|
def filter_files_extensions(files, extensions):
|
|
|
|
return sorted(list(filter(lambda a: os.path.splitext(a)[-1].lower() in extensions, files)))
|
|
|
|
|
|
|
|
class CLIPTextEncode:
|
|
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
|
|
return {"required": {"text": ("STRING", ), "clip": ("CLIP", )}}
|
|
|
|
RETURN_TYPES = ("CONDITIONING",)
|
|
|
|
FUNCTION = "encode"
|
|
|
|
|
|
|
|
def encode(self, clip, text):
|
|
|
|
return (clip.encode(text), )
|
|
|
|
|
|
|
|
class VAEDecode:
|
|
|
|
def __init__(self, device="cpu"):
|
|
|
|
self.device = device
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
|
|
return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
|
FUNCTION = "decode"
|
|
|
|
|
|
|
|
def decode(self, vae, samples):
|
|
|
|
return (vae.decode(samples), )
|
|
|
|
|
|
|
|
class VAEEncode:
|
|
|
|
def __init__(self, device="cpu"):
|
|
|
|
self.device = device
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
|
|
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
|
|
|
|
RETURN_TYPES = ("LATENT",)
|
|
|
|
FUNCTION = "encode"
|
|
|
|
|
|
|
|
def encode(self, vae, pixels):
|
|
|
|
x = (pixels.shape[1] // 64) * 64
|
|
|
|
y = (pixels.shape[2] // 64) * 64
|
|
|
|
if pixels.shape[1] != x or pixels.shape[2] != y:
|
|
|
|
pixels = pixels[:,:x,:y,:]
|
|
|
|
return (vae.encode(pixels), )
|
|
|
|
|
|
|
|
class CheckpointLoader:
|
|
|
|
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
|
|
|
|
config_dir = os.path.join(models_dir, "configs")
|
|
|
|
ckpt_dir = os.path.join(models_dir, "checkpoints")
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
|
|
return {"required": { "config_name": (filter_files_extensions(os.listdir(s.config_dir), '.yaml'), ),
|
|
|
|
"ckpt_name": (filter_files_extensions(os.listdir(s.ckpt_dir), supported_ckpt_extensions), )}}
|
|
|
|
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
|
|
|
|
FUNCTION = "load_checkpoint"
|
|
|
|
|
|
|
|
def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
|
|
|
|
config_path = os.path.join(self.config_dir, config_name)
|
|
|
|
ckpt_path = os.path.join(self.ckpt_dir, ckpt_name)
|
|
|
|
return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True)
|
|
|
|
|
|
|
|
class VAELoader:
|
|
|
|
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
|
|
|
|
vae_dir = os.path.join(models_dir, "vae")
|
|
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
|
|
return {"required": { "vae_name": (filter_files_extensions(os.listdir(s.vae_dir), supported_ckpt_extensions), )}}
|
|
|
|
RETURN_TYPES = ("VAE",)
|
|
|
|
FUNCTION = "load_vae"
|
|
|
|
|
|
|
|
#TODO: scale factor?
|
|
|
|
def load_vae(self, vae_name):
|
|
|
|
vae_path = os.path.join(self.vae_dir, vae_name)
|
|
|
|
vae = comfy.sd.VAE(ckpt_path=vae_path)
|
|
|
|
return (vae,)
|
|
|
|
|
|
|
|
class EmptyLatentImage:
|
|
|
|
def __init__(self, device="cpu"):
|
|
|
|
self.device = device
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
|
|
return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
|
|
|
|
"height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
|
|
|
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
|
|
|
|
RETURN_TYPES = ("LATENT",)
|
|
|
|
FUNCTION = "generate"
|
|
|
|
|
|
|
|
def generate(self, width, height, batch_size=1):
|
|
|
|
latent = torch.zeros([batch_size, 4, height // 8, width // 8])
|
|
|
|
return (latent, )
|
|
|
|
|
|
|
|
class LatentUpscale:
|
|
|
|
upscale_methods = ["nearest-exact", "bilinear", "area"]
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
|
|
return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
|
|
|
|
"width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
|
|
|
|
"height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),}}
|
|
|
|
RETURN_TYPES = ("LATENT",)
|
|
|
|
FUNCTION = "upscale"
|
|
|
|
|
|
|
|
def upscale(self, samples, upscale_method, width, height):
|
|
|
|
s = torch.nn.functional.interpolate(samples, size=(height // 8, width // 8), mode=upscale_method)
|
|
|
|
return (s,)
|
|
|
|
|
|
|
|
class KSampler:
|
|
|
|
def __init__(self, device="cuda"):
|
|
|
|
self.device = device
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
|
|
return {"required":
|
|
|
|
{"model": ("MODEL",),
|
|
|
|
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
|
|
|
|
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
|
|
|
|
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
|
|
|
|
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
|
|
|
|
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
|
|
|
|
"positive": ("CONDITIONING", ),
|
|
|
|
"negative": ("CONDITIONING", ),
|
|
|
|
"latent_image": ("LATENT", ),
|
|
|
|
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
|
|
}}
|
|
|
|
|
|
|
|
RETURN_TYPES = ("LATENT",)
|
|
|
|
FUNCTION = "sample"
|
|
|
|
|
|
|
|
def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
|
|
|
|
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=torch.manual_seed(seed), device="cpu")
|
|
|
|
model = model.to(self.device)
|
|
|
|
noise = noise.to(self.device)
|
|
|
|
latent_image = latent_image.to(self.device)
|
|
|
|
|
|
|
|
if positive.shape[0] < noise.shape[0]:
|
|
|
|
positive = torch.cat([positive] * noise.shape[0])
|
|
|
|
|
|
|
|
if negative.shape[0] < noise.shape[0]:
|
|
|
|
negative = torch.cat([negative] * noise.shape[0])
|
|
|
|
|
|
|
|
positive = positive.to(self.device)
|
|
|
|
negative = negative.to(self.device)
|
|
|
|
|
|
|
|
if sampler_name in comfy.samplers.KSampler.SAMPLERS:
|
|
|
|
sampler = comfy.samplers.KSampler(model, steps=steps, device=self.device, sampler=sampler_name, scheduler=scheduler, denoise=denoise)
|
|
|
|
else:
|
|
|
|
#other samplers
|
|
|
|
pass
|
|
|
|
|
|
|
|
samples = sampler.sample(noise, positive, negative, cfg=cfg, latent_image=latent_image)
|
|
|
|
samples = samples.cpu()
|
|
|
|
model = model.cpu()
|
|
|
|
return (samples, )
|
|
|
|
|
|
|
|
|
|
|
|
class SaveImage:
|
|
|
|
def __init__(self):
|
|
|
|
self.output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output")
|
|
|
|
try:
|
|
|
|
self.counter = int(max(filter(lambda a: 'ComfyUI_' in a, os.listdir(self.output_dir))).split('_')[1]) + 1
|
|
|
|
except:
|
|
|
|
self.counter = 1
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
|
|
return {"required":
|
|
|
|
{"images": ("IMAGE", )},
|
|
|
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
|
|
|
}
|
|
|
|
|
|
|
|
RETURN_TYPES = ()
|
|
|
|
FUNCTION = "save_images"
|
|
|
|
|
|
|
|
OUTPUT_NODE = True
|
|
|
|
|
|
|
|
def save_images(self, images, prompt=None, extra_pnginfo=None):
|
|
|
|
for image in images:
|
|
|
|
i = 255. * image.cpu().numpy()
|
|
|
|
img = Image.fromarray(i.astype(np.uint8))
|
|
|
|
metadata = PngInfo()
|
|
|
|
if prompt is not None:
|
|
|
|
metadata.add_text("prompt", json.dumps(prompt))
|
|
|
|
if extra_pnginfo is not None:
|
|
|
|
for x in extra_pnginfo:
|
|
|
|
metadata.add_text(x, json.dumps(extra_pnginfo[x]))
|
|
|
|
img.save(f"output/ComfyUI_{self.counter:05}_.png", pnginfo=metadata, optimize=True)
|
|
|
|
self.counter += 1
|
|
|
|
|
|
|
|
class LoadImage:
|
|
|
|
input_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
|
|
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
|
|
return {"required":
|
|
|
|
{"image": (os.listdir(s.input_dir), )},
|
|
|
|
}
|
|
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
|
FUNCTION = "load_image"
|
|
|
|
def load_image(self, image):
|
|
|
|
image_path = os.path.join(self.input_dir, image)
|
|
|
|
image = Image.open(image_path).convert("RGB")
|
|
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
|
|
image = torch.from_numpy(image[None])[None,]
|
|
|
|
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
|
|
"KSampler": KSampler,
|
|
|
|
"CheckpointLoader": CheckpointLoader,
|
|
|
|
"CLIPTextEncode": CLIPTextEncode,
|
|
|
|
"VAEDecode": VAEDecode,
|
|
|
|
"VAEEncode": VAEEncode,
|
|
|
|
"VAELoader": VAELoader,
|
|
|
|
"EmptyLatentImage": EmptyLatentImage,
|
|
|
|
"LatentUpscale": LatentUpscale,
|
|
|
|
"SaveImage": SaveImage,
|
|
|
|
"LoadImage": LoadImage
|
|
|
|
}
|
|
|
|
|
|
|
|
|