You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
866 lines
28 KiB
866 lines
28 KiB
2 years ago
|
# pylint: skip-file
|
||
|
# type: ignore
|
||
|
import math
|
||
|
import random
|
||
|
|
||
|
import torch
|
||
|
from torch import nn
|
||
|
from torch.nn import functional as F
|
||
|
|
||
|
from .fused_act import FusedLeakyReLU, fused_leaky_relu
|
||
|
from .upfirdn2d import upfirdn2d
|
||
|
|
||
|
|
||
|
class NormStyleCode(nn.Module):
|
||
|
def forward(self, x):
|
||
|
"""Normalize the style codes.
|
||
|
|
||
|
Args:
|
||
|
x (Tensor): Style codes with shape (b, c).
|
||
|
|
||
|
Returns:
|
||
|
Tensor: Normalized tensor.
|
||
|
"""
|
||
|
return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8)
|
||
|
|
||
|
|
||
|
def make_resample_kernel(k):
|
||
|
"""Make resampling kernel for UpFirDn.
|
||
|
|
||
|
Args:
|
||
|
k (list[int]): A list indicating the 1D resample kernel magnitude.
|
||
|
|
||
|
Returns:
|
||
|
Tensor: 2D resampled kernel.
|
||
|
"""
|
||
|
k = torch.tensor(k, dtype=torch.float32)
|
||
|
if k.ndim == 1:
|
||
|
k = k[None, :] * k[:, None] # to 2D kernel, outer product
|
||
|
# normalize
|
||
|
k /= k.sum()
|
||
|
return k
|
||
|
|
||
|
|
||
|
class UpFirDnUpsample(nn.Module):
|
||
|
"""Upsample, FIR filter, and downsample (upsampole version).
|
||
|
|
||
|
References:
|
||
|
1. https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.upfirdn.html # noqa: E501
|
||
|
2. http://www.ece.northwestern.edu/local-apps/matlabhelp/toolbox/signal/upfirdn.html # noqa: E501
|
||
|
|
||
|
Args:
|
||
|
resample_kernel (list[int]): A list indicating the 1D resample kernel
|
||
|
magnitude.
|
||
|
factor (int): Upsampling scale factor. Default: 2.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, resample_kernel, factor=2):
|
||
|
super(UpFirDnUpsample, self).__init__()
|
||
|
self.kernel = make_resample_kernel(resample_kernel) * (factor**2)
|
||
|
self.factor = factor
|
||
|
|
||
|
pad = self.kernel.shape[0] - factor
|
||
|
self.pad = ((pad + 1) // 2 + factor - 1, pad // 2)
|
||
|
|
||
|
def forward(self, x):
|
||
|
out = upfirdn2d(x, self.kernel.type_as(x), up=self.factor, down=1, pad=self.pad)
|
||
|
return out
|
||
|
|
||
|
def __repr__(self):
|
||
|
return f"{self.__class__.__name__}(factor={self.factor})"
|
||
|
|
||
|
|
||
|
class UpFirDnDownsample(nn.Module):
|
||
|
"""Upsample, FIR filter, and downsample (downsampole version).
|
||
|
|
||
|
Args:
|
||
|
resample_kernel (list[int]): A list indicating the 1D resample kernel
|
||
|
magnitude.
|
||
|
factor (int): Downsampling scale factor. Default: 2.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, resample_kernel, factor=2):
|
||
|
super(UpFirDnDownsample, self).__init__()
|
||
|
self.kernel = make_resample_kernel(resample_kernel)
|
||
|
self.factor = factor
|
||
|
|
||
|
pad = self.kernel.shape[0] - factor
|
||
|
self.pad = ((pad + 1) // 2, pad // 2)
|
||
|
|
||
|
def forward(self, x):
|
||
|
out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=self.factor, pad=self.pad)
|
||
|
return out
|
||
|
|
||
|
def __repr__(self):
|
||
|
return f"{self.__class__.__name__}(factor={self.factor})"
|
||
|
|
||
|
|
||
|
class UpFirDnSmooth(nn.Module):
|
||
|
"""Upsample, FIR filter, and downsample (smooth version).
|
||
|
|
||
|
Args:
|
||
|
resample_kernel (list[int]): A list indicating the 1D resample kernel
|
||
|
magnitude.
|
||
|
upsample_factor (int): Upsampling scale factor. Default: 1.
|
||
|
downsample_factor (int): Downsampling scale factor. Default: 1.
|
||
|
kernel_size (int): Kernel size: Default: 1.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self, resample_kernel, upsample_factor=1, downsample_factor=1, kernel_size=1
|
||
|
):
|
||
|
super(UpFirDnSmooth, self).__init__()
|
||
|
self.upsample_factor = upsample_factor
|
||
|
self.downsample_factor = downsample_factor
|
||
|
self.kernel = make_resample_kernel(resample_kernel)
|
||
|
if upsample_factor > 1:
|
||
|
self.kernel = self.kernel * (upsample_factor**2)
|
||
|
|
||
|
if upsample_factor > 1:
|
||
|
pad = (self.kernel.shape[0] - upsample_factor) - (kernel_size - 1)
|
||
|
self.pad = ((pad + 1) // 2 + upsample_factor - 1, pad // 2 + 1)
|
||
|
elif downsample_factor > 1:
|
||
|
pad = (self.kernel.shape[0] - downsample_factor) + (kernel_size - 1)
|
||
|
self.pad = ((pad + 1) // 2, pad // 2)
|
||
|
else:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def forward(self, x):
|
||
|
out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=1, pad=self.pad)
|
||
|
return out
|
||
|
|
||
|
def __repr__(self):
|
||
|
return (
|
||
|
f"{self.__class__.__name__}(upsample_factor={self.upsample_factor}"
|
||
|
f", downsample_factor={self.downsample_factor})"
|
||
|
)
|
||
|
|
||
|
|
||
|
class EqualLinear(nn.Module):
|
||
|
"""Equalized Linear as StyleGAN2.
|
||
|
|
||
|
Args:
|
||
|
in_channels (int): Size of each sample.
|
||
|
out_channels (int): Size of each output sample.
|
||
|
bias (bool): If set to ``False``, the layer will not learn an additive
|
||
|
bias. Default: ``True``.
|
||
|
bias_init_val (float): Bias initialized value. Default: 0.
|
||
|
lr_mul (float): Learning rate multiplier. Default: 1.
|
||
|
activation (None | str): The activation after ``linear`` operation.
|
||
|
Supported: 'fused_lrelu', None. Default: None.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
bias=True,
|
||
|
bias_init_val=0,
|
||
|
lr_mul=1,
|
||
|
activation=None,
|
||
|
):
|
||
|
super(EqualLinear, self).__init__()
|
||
|
self.in_channels = in_channels
|
||
|
self.out_channels = out_channels
|
||
|
self.lr_mul = lr_mul
|
||
|
self.activation = activation
|
||
|
if self.activation not in ["fused_lrelu", None]:
|
||
|
raise ValueError(
|
||
|
f"Wrong activation value in EqualLinear: {activation}"
|
||
|
"Supported ones are: ['fused_lrelu', None]."
|
||
|
)
|
||
|
self.scale = (1 / math.sqrt(in_channels)) * lr_mul
|
||
|
|
||
|
self.weight = nn.Parameter(torch.randn(out_channels, in_channels).div_(lr_mul))
|
||
|
if bias:
|
||
|
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
|
||
|
else:
|
||
|
self.register_parameter("bias", None)
|
||
|
|
||
|
def forward(self, x):
|
||
|
if self.bias is None:
|
||
|
bias = None
|
||
|
else:
|
||
|
bias = self.bias * self.lr_mul
|
||
|
if self.activation == "fused_lrelu":
|
||
|
out = F.linear(x, self.weight * self.scale)
|
||
|
out = fused_leaky_relu(out, bias)
|
||
|
else:
|
||
|
out = F.linear(x, self.weight * self.scale, bias=bias)
|
||
|
return out
|
||
|
|
||
|
def __repr__(self):
|
||
|
return (
|
||
|
f"{self.__class__.__name__}(in_channels={self.in_channels}, "
|
||
|
f"out_channels={self.out_channels}, bias={self.bias is not None})"
|
||
|
)
|
||
|
|
||
|
|
||
|
class ModulatedConv2d(nn.Module):
|
||
|
"""Modulated Conv2d used in StyleGAN2.
|
||
|
|
||
|
There is no bias in ModulatedConv2d.
|
||
|
|
||
|
Args:
|
||
|
in_channels (int): Channel number of the input.
|
||
|
out_channels (int): Channel number of the output.
|
||
|
kernel_size (int): Size of the convolving kernel.
|
||
|
num_style_feat (int): Channel number of style features.
|
||
|
demodulate (bool): Whether to demodulate in the conv layer.
|
||
|
Default: True.
|
||
|
sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
|
||
|
Default: None.
|
||
|
resample_kernel (list[int]): A list indicating the 1D resample kernel
|
||
|
magnitude. Default: (1, 3, 3, 1).
|
||
|
eps (float): A value added to the denominator for numerical stability.
|
||
|
Default: 1e-8.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
kernel_size,
|
||
|
num_style_feat,
|
||
|
demodulate=True,
|
||
|
sample_mode=None,
|
||
|
resample_kernel=(1, 3, 3, 1),
|
||
|
eps=1e-8,
|
||
|
):
|
||
|
super(ModulatedConv2d, self).__init__()
|
||
|
self.in_channels = in_channels
|
||
|
self.out_channels = out_channels
|
||
|
self.kernel_size = kernel_size
|
||
|
self.demodulate = demodulate
|
||
|
self.sample_mode = sample_mode
|
||
|
self.eps = eps
|
||
|
|
||
|
if self.sample_mode == "upsample":
|
||
|
self.smooth = UpFirDnSmooth(
|
||
|
resample_kernel,
|
||
|
upsample_factor=2,
|
||
|
downsample_factor=1,
|
||
|
kernel_size=kernel_size,
|
||
|
)
|
||
|
elif self.sample_mode == "downsample":
|
||
|
self.smooth = UpFirDnSmooth(
|
||
|
resample_kernel,
|
||
|
upsample_factor=1,
|
||
|
downsample_factor=2,
|
||
|
kernel_size=kernel_size,
|
||
|
)
|
||
|
elif self.sample_mode is None:
|
||
|
pass
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
f"Wrong sample mode {self.sample_mode}, "
|
||
|
"supported ones are ['upsample', 'downsample', None]."
|
||
|
)
|
||
|
|
||
|
self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
|
||
|
# modulation inside each modulated conv
|
||
|
self.modulation = EqualLinear(
|
||
|
num_style_feat,
|
||
|
in_channels,
|
||
|
bias=True,
|
||
|
bias_init_val=1,
|
||
|
lr_mul=1,
|
||
|
activation=None,
|
||
|
)
|
||
|
|
||
|
self.weight = nn.Parameter(
|
||
|
torch.randn(1, out_channels, in_channels, kernel_size, kernel_size)
|
||
|
)
|
||
|
self.padding = kernel_size // 2
|
||
|
|
||
|
def forward(self, x, style):
|
||
|
"""Forward function.
|
||
|
|
||
|
Args:
|
||
|
x (Tensor): Tensor with shape (b, c, h, w).
|
||
|
style (Tensor): Tensor with shape (b, num_style_feat).
|
||
|
|
||
|
Returns:
|
||
|
Tensor: Modulated tensor after convolution.
|
||
|
"""
|
||
|
b, c, h, w = x.shape # c = c_in
|
||
|
# weight modulation
|
||
|
style = self.modulation(style).view(b, 1, c, 1, 1)
|
||
|
# self.weight: (1, c_out, c_in, k, k); style: (b, 1, c, 1, 1)
|
||
|
weight = self.scale * self.weight * style # (b, c_out, c_in, k, k)
|
||
|
|
||
|
if self.demodulate:
|
||
|
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
|
||
|
weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
|
||
|
|
||
|
weight = weight.view(
|
||
|
b * self.out_channels, c, self.kernel_size, self.kernel_size
|
||
|
)
|
||
|
|
||
|
if self.sample_mode == "upsample":
|
||
|
x = x.view(1, b * c, h, w)
|
||
|
weight = weight.view(
|
||
|
b, self.out_channels, c, self.kernel_size, self.kernel_size
|
||
|
)
|
||
|
weight = weight.transpose(1, 2).reshape(
|
||
|
b * c, self.out_channels, self.kernel_size, self.kernel_size
|
||
|
)
|
||
|
out = F.conv_transpose2d(x, weight, padding=0, stride=2, groups=b)
|
||
|
out = out.view(b, self.out_channels, *out.shape[2:4])
|
||
|
out = self.smooth(out)
|
||
|
elif self.sample_mode == "downsample":
|
||
|
x = self.smooth(x)
|
||
|
x = x.view(1, b * c, *x.shape[2:4])
|
||
|
out = F.conv2d(x, weight, padding=0, stride=2, groups=b)
|
||
|
out = out.view(b, self.out_channels, *out.shape[2:4])
|
||
|
else:
|
||
|
x = x.view(1, b * c, h, w)
|
||
|
# weight: (b*c_out, c_in, k, k), groups=b
|
||
|
out = F.conv2d(x, weight, padding=self.padding, groups=b)
|
||
|
out = out.view(b, self.out_channels, *out.shape[2:4])
|
||
|
|
||
|
return out
|
||
|
|
||
|
def __repr__(self):
|
||
|
return (
|
||
|
f"{self.__class__.__name__}(in_channels={self.in_channels}, "
|
||
|
f"out_channels={self.out_channels}, "
|
||
|
f"kernel_size={self.kernel_size}, "
|
||
|
f"demodulate={self.demodulate}, sample_mode={self.sample_mode})"
|
||
|
)
|
||
|
|
||
|
|
||
|
class StyleConv(nn.Module):
|
||
|
"""Style conv.
|
||
|
|
||
|
Args:
|
||
|
in_channels (int): Channel number of the input.
|
||
|
out_channels (int): Channel number of the output.
|
||
|
kernel_size (int): Size of the convolving kernel.
|
||
|
num_style_feat (int): Channel number of style features.
|
||
|
demodulate (bool): Whether demodulate in the conv layer. Default: True.
|
||
|
sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
|
||
|
Default: None.
|
||
|
resample_kernel (list[int]): A list indicating the 1D resample kernel
|
||
|
magnitude. Default: (1, 3, 3, 1).
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
kernel_size,
|
||
|
num_style_feat,
|
||
|
demodulate=True,
|
||
|
sample_mode=None,
|
||
|
resample_kernel=(1, 3, 3, 1),
|
||
|
):
|
||
|
super(StyleConv, self).__init__()
|
||
|
self.modulated_conv = ModulatedConv2d(
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
kernel_size,
|
||
|
num_style_feat,
|
||
|
demodulate=demodulate,
|
||
|
sample_mode=sample_mode,
|
||
|
resample_kernel=resample_kernel,
|
||
|
)
|
||
|
self.weight = nn.Parameter(torch.zeros(1)) # for noise injection
|
||
|
self.activate = FusedLeakyReLU(out_channels)
|
||
|
|
||
|
def forward(self, x, style, noise=None):
|
||
|
# modulate
|
||
|
out = self.modulated_conv(x, style)
|
||
|
# noise injection
|
||
|
if noise is None:
|
||
|
b, _, h, w = out.shape
|
||
|
noise = out.new_empty(b, 1, h, w).normal_()
|
||
|
out = out + self.weight * noise
|
||
|
# activation (with bias)
|
||
|
out = self.activate(out)
|
||
|
return out
|
||
|
|
||
|
|
||
|
class ToRGB(nn.Module):
|
||
|
"""To RGB from features.
|
||
|
|
||
|
Args:
|
||
|
in_channels (int): Channel number of input.
|
||
|
num_style_feat (int): Channel number of style features.
|
||
|
upsample (bool): Whether to upsample. Default: True.
|
||
|
resample_kernel (list[int]): A list indicating the 1D resample kernel
|
||
|
magnitude. Default: (1, 3, 3, 1).
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self, in_channels, num_style_feat, upsample=True, resample_kernel=(1, 3, 3, 1)
|
||
|
):
|
||
|
super(ToRGB, self).__init__()
|
||
|
if upsample:
|
||
|
self.upsample = UpFirDnUpsample(resample_kernel, factor=2)
|
||
|
else:
|
||
|
self.upsample = None
|
||
|
self.modulated_conv = ModulatedConv2d(
|
||
|
in_channels,
|
||
|
3,
|
||
|
kernel_size=1,
|
||
|
num_style_feat=num_style_feat,
|
||
|
demodulate=False,
|
||
|
sample_mode=None,
|
||
|
)
|
||
|
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
|
||
|
|
||
|
def forward(self, x, style, skip=None):
|
||
|
"""Forward function.
|
||
|
|
||
|
Args:
|
||
|
x (Tensor): Feature tensor with shape (b, c, h, w).
|
||
|
style (Tensor): Tensor with shape (b, num_style_feat).
|
||
|
skip (Tensor): Base/skip tensor. Default: None.
|
||
|
|
||
|
Returns:
|
||
|
Tensor: RGB images.
|
||
|
"""
|
||
|
out = self.modulated_conv(x, style)
|
||
|
out = out + self.bias
|
||
|
if skip is not None:
|
||
|
if self.upsample:
|
||
|
skip = self.upsample(skip)
|
||
|
out = out + skip
|
||
|
return out
|
||
|
|
||
|
|
||
|
class ConstantInput(nn.Module):
|
||
|
"""Constant input.
|
||
|
|
||
|
Args:
|
||
|
num_channel (int): Channel number of constant input.
|
||
|
size (int): Spatial size of constant input.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, num_channel, size):
|
||
|
super(ConstantInput, self).__init__()
|
||
|
self.weight = nn.Parameter(torch.randn(1, num_channel, size, size))
|
||
|
|
||
|
def forward(self, batch):
|
||
|
out = self.weight.repeat(batch, 1, 1, 1)
|
||
|
return out
|
||
|
|
||
|
|
||
|
class StyleGAN2Generator(nn.Module):
|
||
|
"""StyleGAN2 Generator.
|
||
|
|
||
|
Args:
|
||
|
out_size (int): The spatial size of outputs.
|
||
|
num_style_feat (int): Channel number of style features. Default: 512.
|
||
|
num_mlp (int): Layer number of MLP style layers. Default: 8.
|
||
|
channel_multiplier (int): Channel multiplier for large networks of
|
||
|
StyleGAN2. Default: 2.
|
||
|
resample_kernel (list[int]): A list indicating the 1D resample kernel
|
||
|
magnitude. A cross production will be applied to extent 1D resample
|
||
|
kernel to 2D resample kernel. Default: (1, 3, 3, 1).
|
||
|
lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
|
||
|
narrow (float): Narrow ratio for channels. Default: 1.0.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
out_size,
|
||
|
num_style_feat=512,
|
||
|
num_mlp=8,
|
||
|
channel_multiplier=2,
|
||
|
resample_kernel=(1, 3, 3, 1),
|
||
|
lr_mlp=0.01,
|
||
|
narrow=1,
|
||
|
):
|
||
|
super(StyleGAN2Generator, self).__init__()
|
||
|
# Style MLP layers
|
||
|
self.num_style_feat = num_style_feat
|
||
|
style_mlp_layers = [NormStyleCode()]
|
||
|
for i in range(num_mlp):
|
||
|
style_mlp_layers.append(
|
||
|
EqualLinear(
|
||
|
num_style_feat,
|
||
|
num_style_feat,
|
||
|
bias=True,
|
||
|
bias_init_val=0,
|
||
|
lr_mul=lr_mlp,
|
||
|
activation="fused_lrelu",
|
||
|
)
|
||
|
)
|
||
|
self.style_mlp = nn.Sequential(*style_mlp_layers)
|
||
|
|
||
|
channels = {
|
||
|
"4": int(512 * narrow),
|
||
|
"8": int(512 * narrow),
|
||
|
"16": int(512 * narrow),
|
||
|
"32": int(512 * narrow),
|
||
|
"64": int(256 * channel_multiplier * narrow),
|
||
|
"128": int(128 * channel_multiplier * narrow),
|
||
|
"256": int(64 * channel_multiplier * narrow),
|
||
|
"512": int(32 * channel_multiplier * narrow),
|
||
|
"1024": int(16 * channel_multiplier * narrow),
|
||
|
}
|
||
|
self.channels = channels
|
||
|
|
||
|
self.constant_input = ConstantInput(channels["4"], size=4)
|
||
|
self.style_conv1 = StyleConv(
|
||
|
channels["4"],
|
||
|
channels["4"],
|
||
|
kernel_size=3,
|
||
|
num_style_feat=num_style_feat,
|
||
|
demodulate=True,
|
||
|
sample_mode=None,
|
||
|
resample_kernel=resample_kernel,
|
||
|
)
|
||
|
self.to_rgb1 = ToRGB(
|
||
|
channels["4"],
|
||
|
num_style_feat,
|
||
|
upsample=False,
|
||
|
resample_kernel=resample_kernel,
|
||
|
)
|
||
|
|
||
|
self.log_size = int(math.log(out_size, 2))
|
||
|
self.num_layers = (self.log_size - 2) * 2 + 1
|
||
|
self.num_latent = self.log_size * 2 - 2
|
||
|
|
||
|
self.style_convs = nn.ModuleList()
|
||
|
self.to_rgbs = nn.ModuleList()
|
||
|
self.noises = nn.Module()
|
||
|
|
||
|
in_channels = channels["4"]
|
||
|
# noise
|
||
|
for layer_idx in range(self.num_layers):
|
||
|
resolution = 2 ** ((layer_idx + 5) // 2)
|
||
|
shape = [1, 1, resolution, resolution]
|
||
|
self.noises.register_buffer(f"noise{layer_idx}", torch.randn(*shape))
|
||
|
# style convs and to_rgbs
|
||
|
for i in range(3, self.log_size + 1):
|
||
|
out_channels = channels[f"{2**i}"]
|
||
|
self.style_convs.append(
|
||
|
StyleConv(
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
kernel_size=3,
|
||
|
num_style_feat=num_style_feat,
|
||
|
demodulate=True,
|
||
|
sample_mode="upsample",
|
||
|
resample_kernel=resample_kernel,
|
||
|
)
|
||
|
)
|
||
|
self.style_convs.append(
|
||
|
StyleConv(
|
||
|
out_channels,
|
||
|
out_channels,
|
||
|
kernel_size=3,
|
||
|
num_style_feat=num_style_feat,
|
||
|
demodulate=True,
|
||
|
sample_mode=None,
|
||
|
resample_kernel=resample_kernel,
|
||
|
)
|
||
|
)
|
||
|
self.to_rgbs.append(
|
||
|
ToRGB(
|
||
|
out_channels,
|
||
|
num_style_feat,
|
||
|
upsample=True,
|
||
|
resample_kernel=resample_kernel,
|
||
|
)
|
||
|
)
|
||
|
in_channels = out_channels
|
||
|
|
||
|
def make_noise(self):
|
||
|
"""Make noise for noise injection."""
|
||
|
device = self.constant_input.weight.device
|
||
|
noises = [torch.randn(1, 1, 4, 4, device=device)]
|
||
|
|
||
|
for i in range(3, self.log_size + 1):
|
||
|
for _ in range(2):
|
||
|
noises.append(torch.randn(1, 1, 2**i, 2**i, device=device))
|
||
|
|
||
|
return noises
|
||
|
|
||
|
def get_latent(self, x):
|
||
|
return self.style_mlp(x)
|
||
|
|
||
|
def mean_latent(self, num_latent):
|
||
|
latent_in = torch.randn(
|
||
|
num_latent, self.num_style_feat, device=self.constant_input.weight.device
|
||
|
)
|
||
|
latent = self.style_mlp(latent_in).mean(0, keepdim=True)
|
||
|
return latent
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
styles,
|
||
|
input_is_latent=False,
|
||
|
noise=None,
|
||
|
randomize_noise=True,
|
||
|
truncation=1,
|
||
|
truncation_latent=None,
|
||
|
inject_index=None,
|
||
|
return_latents=False,
|
||
|
):
|
||
|
"""Forward function for StyleGAN2Generator.
|
||
|
|
||
|
Args:
|
||
|
styles (list[Tensor]): Sample codes of styles.
|
||
|
input_is_latent (bool): Whether input is latent style.
|
||
|
Default: False.
|
||
|
noise (Tensor | None): Input noise or None. Default: None.
|
||
|
randomize_noise (bool): Randomize noise, used when 'noise' is
|
||
|
False. Default: True.
|
||
|
truncation (float): TODO. Default: 1.
|
||
|
truncation_latent (Tensor | None): TODO. Default: None.
|
||
|
inject_index (int | None): The injection index for mixing noise.
|
||
|
Default: None.
|
||
|
return_latents (bool): Whether to return style latents.
|
||
|
Default: False.
|
||
|
"""
|
||
|
# style codes -> latents with Style MLP layer
|
||
|
if not input_is_latent:
|
||
|
styles = [self.style_mlp(s) for s in styles]
|
||
|
# noises
|
||
|
if noise is None:
|
||
|
if randomize_noise:
|
||
|
noise = [None] * self.num_layers # for each style conv layer
|
||
|
else: # use the stored noise
|
||
|
noise = [
|
||
|
getattr(self.noises, f"noise{i}") for i in range(self.num_layers)
|
||
|
]
|
||
|
# style truncation
|
||
|
if truncation < 1:
|
||
|
style_truncation = []
|
||
|
for style in styles:
|
||
|
style_truncation.append(
|
||
|
truncation_latent + truncation * (style - truncation_latent)
|
||
|
)
|
||
|
styles = style_truncation
|
||
|
# get style latent with injection
|
||
|
if len(styles) == 1:
|
||
|
inject_index = self.num_latent
|
||
|
|
||
|
if styles[0].ndim < 3:
|
||
|
# repeat latent code for all the layers
|
||
|
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
||
|
else: # used for encoder with different latent code for each layer
|
||
|
latent = styles[0]
|
||
|
elif len(styles) == 2: # mixing noises
|
||
|
if inject_index is None:
|
||
|
inject_index = random.randint(1, self.num_latent - 1)
|
||
|
latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
||
|
latent2 = (
|
||
|
styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
|
||
|
)
|
||
|
latent = torch.cat([latent1, latent2], 1)
|
||
|
|
||
|
# main generation
|
||
|
out = self.constant_input(latent.shape[0])
|
||
|
out = self.style_conv1(out, latent[:, 0], noise=noise[0])
|
||
|
skip = self.to_rgb1(out, latent[:, 1])
|
||
|
|
||
|
i = 1
|
||
|
for conv1, conv2, noise1, noise2, to_rgb in zip(
|
||
|
self.style_convs[::2],
|
||
|
self.style_convs[1::2],
|
||
|
noise[1::2],
|
||
|
noise[2::2],
|
||
|
self.to_rgbs,
|
||
|
):
|
||
|
out = conv1(out, latent[:, i], noise=noise1)
|
||
|
out = conv2(out, latent[:, i + 1], noise=noise2)
|
||
|
skip = to_rgb(out, latent[:, i + 2], skip)
|
||
|
i += 2
|
||
|
|
||
|
image = skip
|
||
|
|
||
|
if return_latents:
|
||
|
return image, latent
|
||
|
else:
|
||
|
return image, None
|
||
|
|
||
|
|
||
|
class ScaledLeakyReLU(nn.Module):
|
||
|
"""Scaled LeakyReLU.
|
||
|
|
||
|
Args:
|
||
|
negative_slope (float): Negative slope. Default: 0.2.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, negative_slope=0.2):
|
||
|
super(ScaledLeakyReLU, self).__init__()
|
||
|
self.negative_slope = negative_slope
|
||
|
|
||
|
def forward(self, x):
|
||
|
out = F.leaky_relu(x, negative_slope=self.negative_slope)
|
||
|
return out * math.sqrt(2)
|
||
|
|
||
|
|
||
|
class EqualConv2d(nn.Module):
|
||
|
"""Equalized Linear as StyleGAN2.
|
||
|
|
||
|
Args:
|
||
|
in_channels (int): Channel number of the input.
|
||
|
out_channels (int): Channel number of the output.
|
||
|
kernel_size (int): Size of the convolving kernel.
|
||
|
stride (int): Stride of the convolution. Default: 1
|
||
|
padding (int): Zero-padding added to both sides of the input.
|
||
|
Default: 0.
|
||
|
bias (bool): If ``True``, adds a learnable bias to the output.
|
||
|
Default: ``True``.
|
||
|
bias_init_val (float): Bias initialized value. Default: 0.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
kernel_size,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
bias=True,
|
||
|
bias_init_val=0,
|
||
|
):
|
||
|
super(EqualConv2d, self).__init__()
|
||
|
self.in_channels = in_channels
|
||
|
self.out_channels = out_channels
|
||
|
self.kernel_size = kernel_size
|
||
|
self.stride = stride
|
||
|
self.padding = padding
|
||
|
self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
|
||
|
|
||
|
self.weight = nn.Parameter(
|
||
|
torch.randn(out_channels, in_channels, kernel_size, kernel_size)
|
||
|
)
|
||
|
if bias:
|
||
|
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
|
||
|
else:
|
||
|
self.register_parameter("bias", None)
|
||
|
|
||
|
def forward(self, x):
|
||
|
out = F.conv2d(
|
||
|
x,
|
||
|
self.weight * self.scale,
|
||
|
bias=self.bias,
|
||
|
stride=self.stride,
|
||
|
padding=self.padding,
|
||
|
)
|
||
|
|
||
|
return out
|
||
|
|
||
|
def __repr__(self):
|
||
|
return (
|
||
|
f"{self.__class__.__name__}(in_channels={self.in_channels}, "
|
||
|
f"out_channels={self.out_channels}, "
|
||
|
f"kernel_size={self.kernel_size},"
|
||
|
f" stride={self.stride}, padding={self.padding}, "
|
||
|
f"bias={self.bias is not None})"
|
||
|
)
|
||
|
|
||
|
|
||
|
class ConvLayer(nn.Sequential):
|
||
|
"""Conv Layer used in StyleGAN2 Discriminator.
|
||
|
|
||
|
Args:
|
||
|
in_channels (int): Channel number of the input.
|
||
|
out_channels (int): Channel number of the output.
|
||
|
kernel_size (int): Kernel size.
|
||
|
downsample (bool): Whether downsample by a factor of 2.
|
||
|
Default: False.
|
||
|
resample_kernel (list[int]): A list indicating the 1D resample
|
||
|
kernel magnitude. A cross production will be applied to
|
||
|
extent 1D resample kernel to 2D resample kernel.
|
||
|
Default: (1, 3, 3, 1).
|
||
|
bias (bool): Whether with bias. Default: True.
|
||
|
activate (bool): Whether use activateion. Default: True.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
kernel_size,
|
||
|
downsample=False,
|
||
|
resample_kernel=(1, 3, 3, 1),
|
||
|
bias=True,
|
||
|
activate=True,
|
||
|
):
|
||
|
layers = []
|
||
|
# downsample
|
||
|
if downsample:
|
||
|
layers.append(
|
||
|
UpFirDnSmooth(
|
||
|
resample_kernel,
|
||
|
upsample_factor=1,
|
||
|
downsample_factor=2,
|
||
|
kernel_size=kernel_size,
|
||
|
)
|
||
|
)
|
||
|
stride = 2
|
||
|
self.padding = 0
|
||
|
else:
|
||
|
stride = 1
|
||
|
self.padding = kernel_size // 2
|
||
|
# conv
|
||
|
layers.append(
|
||
|
EqualConv2d(
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
kernel_size,
|
||
|
stride=stride,
|
||
|
padding=self.padding,
|
||
|
bias=bias and not activate,
|
||
|
)
|
||
|
)
|
||
|
# activation
|
||
|
if activate:
|
||
|
if bias:
|
||
|
layers.append(FusedLeakyReLU(out_channels))
|
||
|
else:
|
||
|
layers.append(ScaledLeakyReLU(0.2))
|
||
|
|
||
|
super(ConvLayer, self).__init__(*layers)
|
||
|
|
||
|
|
||
|
class ResBlock(nn.Module):
|
||
|
"""Residual block used in StyleGAN2 Discriminator.
|
||
|
|
||
|
Args:
|
||
|
in_channels (int): Channel number of the input.
|
||
|
out_channels (int): Channel number of the output.
|
||
|
resample_kernel (list[int]): A list indicating the 1D resample
|
||
|
kernel magnitude. A cross production will be applied to
|
||
|
extent 1D resample kernel to 2D resample kernel.
|
||
|
Default: (1, 3, 3, 1).
|
||
|
"""
|
||
|
|
||
|
def __init__(self, in_channels, out_channels, resample_kernel=(1, 3, 3, 1)):
|
||
|
super(ResBlock, self).__init__()
|
||
|
|
||
|
self.conv1 = ConvLayer(in_channels, in_channels, 3, bias=True, activate=True)
|
||
|
self.conv2 = ConvLayer(
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
3,
|
||
|
downsample=True,
|
||
|
resample_kernel=resample_kernel,
|
||
|
bias=True,
|
||
|
activate=True,
|
||
|
)
|
||
|
self.skip = ConvLayer(
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
1,
|
||
|
downsample=True,
|
||
|
resample_kernel=resample_kernel,
|
||
|
bias=False,
|
||
|
activate=False,
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
out = self.conv1(x)
|
||
|
out = self.conv2(out)
|
||
|
skip = self.skip(x)
|
||
|
out = (out + skip) / math.sqrt(2)
|
||
|
return out
|