|
|
|
from copy import deepcopy
|
|
|
|
from io import BytesIO
|
|
|
|
from urllib import request
|
|
|
|
import numpy
|
|
|
|
import os
|
|
|
|
from PIL import Image
|
|
|
|
import pytest
|
|
|
|
from pytest import fixture
|
|
|
|
import time
|
|
|
|
import torch
|
|
|
|
from typing import Union
|
|
|
|
import json
|
|
|
|
import subprocess
|
|
|
|
import websocket #NOTE: websocket-client (https://github.com/websocket-client/websocket-client)
|
|
|
|
import uuid
|
|
|
|
import urllib.request
|
|
|
|
import urllib.parse
|
|
|
|
|
|
|
|
|
|
|
|
from comfy.samplers import KSampler
|
|
|
|
|
|
|
|
"""
|
|
|
|
These tests generate and save images through a range of parameters
|
|
|
|
"""
|
|
|
|
|
|
|
|
class ComfyGraph:
|
|
|
|
def __init__(self,
|
|
|
|
graph: dict,
|
|
|
|
sampler_nodes: list[str],
|
|
|
|
):
|
|
|
|
self.graph = graph
|
|
|
|
self.sampler_nodes = sampler_nodes
|
|
|
|
|
|
|
|
def set_prompt(self, prompt, negative_prompt=None):
|
|
|
|
# Sets the prompt for the sampler nodes (eg. base and refiner)
|
|
|
|
for node in self.sampler_nodes:
|
|
|
|
prompt_node = self.graph[node]['inputs']['positive'][0]
|
|
|
|
self.graph[prompt_node]['inputs']['text'] = prompt
|
|
|
|
if negative_prompt:
|
|
|
|
negative_prompt_node = self.graph[node]['inputs']['negative'][0]
|
|
|
|
self.graph[negative_prompt_node]['inputs']['text'] = negative_prompt
|
|
|
|
|
|
|
|
def set_sampler_name(self, sampler_name:str, ):
|
|
|
|
# sets the sampler name for the sampler nodes (eg. base and refiner)
|
|
|
|
for node in self.sampler_nodes:
|
|
|
|
self.graph[node]['inputs']['sampler_name'] = sampler_name
|
|
|
|
|
|
|
|
def set_scheduler(self, scheduler:str):
|
|
|
|
# sets the sampler name for the sampler nodes (eg. base and refiner)
|
|
|
|
for node in self.sampler_nodes:
|
|
|
|
self.graph[node]['inputs']['scheduler'] = scheduler
|
|
|
|
|
|
|
|
def set_filename_prefix(self, prefix:str):
|
|
|
|
# sets the filename prefix for the save nodes
|
|
|
|
for node in self.graph:
|
|
|
|
if self.graph[node]['class_type'] == 'SaveImage':
|
|
|
|
self.graph[node]['inputs']['filename_prefix'] = prefix
|
|
|
|
|
|
|
|
|
|
|
|
class ComfyClient:
|
|
|
|
# From examples/websockets_api_example.py
|
|
|
|
|
|
|
|
def connect(self,
|
|
|
|
listen:str = '127.0.0.1',
|
|
|
|
port:Union[str,int] = 8188,
|
|
|
|
client_id: str = str(uuid.uuid4())
|
|
|
|
):
|
|
|
|
self.client_id = client_id
|
|
|
|
self.server_address = f"{listen}:{port}"
|
|
|
|
ws = websocket.WebSocket()
|
|
|
|
ws.connect("ws://{}/ws?clientId={}".format(self.server_address, self.client_id))
|
|
|
|
self.ws = ws
|
|
|
|
|
|
|
|
def queue_prompt(self, prompt):
|
|
|
|
p = {"prompt": prompt, "client_id": self.client_id}
|
|
|
|
data = json.dumps(p).encode('utf-8')
|
|
|
|
req = urllib.request.Request("http://{}/prompt".format(self.server_address), data=data)
|
|
|
|
return json.loads(urllib.request.urlopen(req).read())
|
|
|
|
|
|
|
|
def get_image(self, filename, subfolder, folder_type):
|
|
|
|
data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
|
|
|
|
url_values = urllib.parse.urlencode(data)
|
|
|
|
with urllib.request.urlopen("http://{}/view?{}".format(self.server_address, url_values)) as response:
|
|
|
|
return response.read()
|
|
|
|
|
|
|
|
def get_history(self, prompt_id):
|
|
|
|
with urllib.request.urlopen("http://{}/history/{}".format(self.server_address, prompt_id)) as response:
|
|
|
|
return json.loads(response.read())
|
|
|
|
|
|
|
|
def get_images(self, graph, save=True):
|
|
|
|
prompt = graph
|
|
|
|
if not save:
|
|
|
|
# Replace save nodes with preview nodes
|
|
|
|
prompt_str = json.dumps(prompt)
|
|
|
|
prompt_str = prompt_str.replace('SaveImage', 'PreviewImage')
|
|
|
|
prompt = json.loads(prompt_str)
|
|
|
|
|
|
|
|
prompt_id = self.queue_prompt(prompt)['prompt_id']
|
|
|
|
output_images = {}
|
|
|
|
while True:
|
|
|
|
out = self.ws.recv()
|
|
|
|
if isinstance(out, str):
|
|
|
|
message = json.loads(out)
|
|
|
|
if message['type'] == 'executing':
|
|
|
|
data = message['data']
|
|
|
|
if data['node'] is None and data['prompt_id'] == prompt_id:
|
|
|
|
break #Execution is done
|
|
|
|
else:
|
|
|
|
continue #previews are binary data
|
|
|
|
|
|
|
|
history = self.get_history(prompt_id)[prompt_id]
|
|
|
|
for o in history['outputs']:
|
|
|
|
for node_id in history['outputs']:
|
|
|
|
node_output = history['outputs'][node_id]
|
|
|
|
if 'images' in node_output:
|
|
|
|
images_output = []
|
|
|
|
for image in node_output['images']:
|
|
|
|
image_data = self.get_image(image['filename'], image['subfolder'], image['type'])
|
|
|
|
images_output.append(image_data)
|
|
|
|
output_images[node_id] = images_output
|
|
|
|
|
|
|
|
return output_images
|
|
|
|
|
|
|
|
#
|
|
|
|
# Initialize graphs
|
|
|
|
#
|
|
|
|
default_graph_file = 'tests/inference/graphs/default_graph_sdxl1_0.json'
|
|
|
|
with open(default_graph_file, 'r') as file:
|
|
|
|
default_graph = json.loads(file.read())
|
|
|
|
DEFAULT_COMFY_GRAPH = ComfyGraph(graph=default_graph, sampler_nodes=['10','14'])
|
|
|
|
DEFAULT_COMFY_GRAPH_ID = os.path.splitext(os.path.basename(default_graph_file))[0]
|
|
|
|
|
|
|
|
#
|
|
|
|
# Loop through these variables
|
|
|
|
#
|
|
|
|
comfy_graph_list = [DEFAULT_COMFY_GRAPH]
|
|
|
|
comfy_graph_ids = [DEFAULT_COMFY_GRAPH_ID]
|
|
|
|
prompt_list = [
|
|
|
|
'a painting of a cat',
|
|
|
|
]
|
|
|
|
|
|
|
|
sampler_list = KSampler.SAMPLERS
|
|
|
|
scheduler_list = KSampler.SCHEDULERS
|
|
|
|
|
|
|
|
@pytest.mark.inference
|
|
|
|
@pytest.mark.parametrize("sampler", sampler_list)
|
|
|
|
@pytest.mark.parametrize("scheduler", scheduler_list)
|
|
|
|
@pytest.mark.parametrize("prompt", prompt_list)
|
|
|
|
class TestInference:
|
|
|
|
#
|
|
|
|
# Initialize server and client
|
|
|
|
#
|
|
|
|
@fixture(scope="class", autouse=True)
|
|
|
|
def _server(self, args_pytest):
|
|
|
|
# Start server
|
|
|
|
p = subprocess.Popen([
|
|
|
|
'python','main.py',
|
|
|
|
'--output-directory', args_pytest["output_dir"],
|
|
|
|
'--listen', args_pytest["listen"],
|
|
|
|
'--port', str(args_pytest["port"]),
|
|
|
|
])
|
|
|
|
yield
|
|
|
|
p.kill()
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
def start_client(self, listen:str, port:int):
|
|
|
|
# Start client
|
|
|
|
comfy_client = ComfyClient()
|
|
|
|
# Connect to server (with retries)
|
|
|
|
n_tries = 5
|
|
|
|
for i in range(n_tries):
|
|
|
|
time.sleep(4)
|
|
|
|
try:
|
|
|
|
comfy_client.connect(listen=listen, port=port)
|
|
|
|
except ConnectionRefusedError as e:
|
|
|
|
print(e)
|
|
|
|
print(f"({i+1}/{n_tries}) Retrying...")
|
|
|
|
else:
|
|
|
|
break
|
|
|
|
return comfy_client
|
|
|
|
|
|
|
|
#
|
|
|
|
# Client and graph fixtures with server warmup
|
|
|
|
#
|
|
|
|
# Returns a "_client_graph", which is client-graph pair corresponding to an initialized server
|
|
|
|
# The "graph" is the default graph
|
|
|
|
@fixture(scope="class", params=comfy_graph_list, ids=comfy_graph_ids, autouse=True)
|
|
|
|
def _client_graph(self, request, args_pytest, _server) -> (ComfyClient, ComfyGraph):
|
|
|
|
comfy_graph = request.param
|
|
|
|
|
|
|
|
# Start client
|
|
|
|
comfy_client = self.start_client(args_pytest["listen"], args_pytest["port"])
|
|
|
|
|
|
|
|
# Warm up pipeline
|
|
|
|
comfy_client.get_images(graph=comfy_graph.graph, save=False)
|
|
|
|
|
|
|
|
yield comfy_client, comfy_graph
|
|
|
|
del comfy_client
|
|
|
|
del comfy_graph
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
@fixture
|
|
|
|
def client(self, _client_graph):
|
|
|
|
client = _client_graph[0]
|
|
|
|
yield client
|
|
|
|
|
|
|
|
@fixture
|
|
|
|
def comfy_graph(self, _client_graph):
|
|
|
|
# avoid mutating the graph
|
|
|
|
graph = deepcopy(_client_graph[1])
|
|
|
|
yield graph
|
|
|
|
|
|
|
|
def test_comfy(
|
|
|
|
self,
|
|
|
|
client,
|
|
|
|
comfy_graph,
|
|
|
|
sampler,
|
|
|
|
scheduler,
|
|
|
|
prompt,
|
|
|
|
request
|
|
|
|
):
|
|
|
|
test_info = request.node.name
|
|
|
|
comfy_graph.set_filename_prefix(test_info)
|
|
|
|
# Settings for comfy graph
|
|
|
|
comfy_graph.set_sampler_name(sampler)
|
|
|
|
comfy_graph.set_scheduler(scheduler)
|
|
|
|
comfy_graph.set_prompt(prompt)
|
|
|
|
|
|
|
|
# Generate
|
|
|
|
images = client.get_images(comfy_graph.graph)
|
|
|
|
|
|
|
|
assert len(images) != 0, "No images generated"
|
|
|
|
# assert all images are not blank
|
|
|
|
for images_output in images.values():
|
|
|
|
for image_data in images_output:
|
|
|
|
pil_image = Image.open(BytesIO(image_data))
|
|
|
|
assert numpy.array(pil_image).any() != 0, "Image is blank"
|
|
|
|
|
|
|
|
|