|
|
|
import torch
|
|
|
|
import comfy.model_management
|
|
|
|
import comfy.sampler_helpers
|
|
|
|
import comfy.samplers
|
|
|
|
import comfy.utils
|
|
|
|
import node_helpers
|
|
|
|
|
|
|
|
def perp_neg(x, noise_pred_pos, noise_pred_neg, noise_pred_nocond, neg_scale, cond_scale):
|
|
|
|
pos = noise_pred_pos - noise_pred_nocond
|
|
|
|
neg = noise_pred_neg - noise_pred_nocond
|
|
|
|
|
|
|
|
perp = neg - ((torch.mul(neg, pos).sum())/(torch.norm(pos)**2)) * pos
|
|
|
|
perp_neg = perp * neg_scale
|
|
|
|
cfg_result = noise_pred_nocond + cond_scale*(pos - perp_neg)
|
|
|
|
return cfg_result
|
|
|
|
|
|
|
|
#TODO: This node should be removed, it has been replaced with PerpNegGuider
|
|
|
|
class PerpNeg:
|
|
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
|
|
return {"required": {"model": ("MODEL", ),
|
|
|
|
"empty_conditioning": ("CONDITIONING", ),
|
|
|
|
"neg_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}),
|
|
|
|
}}
|
|
|
|
RETURN_TYPES = ("MODEL",)
|
|
|
|
FUNCTION = "patch"
|
|
|
|
|
|
|
|
CATEGORY = "_for_testing"
|
|
|
|
|
|
|
|
def patch(self, model, empty_conditioning, neg_scale):
|
|
|
|
m = model.clone()
|
|
|
|
nocond = comfy.sampler_helpers.convert_cond(empty_conditioning)
|
|
|
|
|
|
|
|
def cfg_function(args):
|
|
|
|
model = args["model"]
|
|
|
|
noise_pred_pos = args["cond_denoised"]
|
|
|
|
noise_pred_neg = args["uncond_denoised"]
|
|
|
|
cond_scale = args["cond_scale"]
|
|
|
|
x = args["input"]
|
|
|
|
sigma = args["sigma"]
|
|
|
|
model_options = args["model_options"]
|
|
|
|
nocond_processed = comfy.samplers.encode_model_conds(model.extra_conds, nocond, x, x.device, "negative")
|
|
|
|
|
|
|
|
(noise_pred_nocond,) = comfy.samplers.calc_cond_batch(model, [nocond_processed], x, sigma, model_options)
|
|
|
|
|
|
|
|
cfg_result = x - perp_neg(x, noise_pred_pos, noise_pred_neg, noise_pred_nocond, neg_scale, cond_scale)
|
|
|
|
return cfg_result
|
|
|
|
|
|
|
|
m.set_model_sampler_cfg_function(cfg_function)
|
|
|
|
|
|
|
|
return (m, )
|
|
|
|
|
|
|
|
|
|
|
|
class Guider_PerpNeg(comfy.samplers.CFGGuider):
|
|
|
|
def set_conds(self, positive, negative, empty_negative_prompt):
|
|
|
|
empty_negative_prompt = node_helpers.conditioning_set_values(empty_negative_prompt, {"prompt_type": "negative"})
|
|
|
|
self.inner_set_conds({"positive": positive, "empty_negative_prompt": empty_negative_prompt, "negative": negative})
|
|
|
|
|
|
|
|
def set_cfg(self, cfg, neg_scale):
|
|
|
|
self.cfg = cfg
|
|
|
|
self.neg_scale = neg_scale
|
|
|
|
|
|
|
|
def predict_noise(self, x, timestep, model_options={}, seed=None):
|
|
|
|
positive_cond = self.conds.get("positive", None)
|
|
|
|
negative_cond = self.conds.get("negative", None)
|
|
|
|
empty_cond = self.conds.get("empty_negative_prompt", None)
|
|
|
|
|
|
|
|
out = comfy.samplers.calc_cond_batch(self.inner_model, [negative_cond, positive_cond, empty_cond], x, timestep, model_options)
|
|
|
|
return perp_neg(x, out[1], out[0], out[2], self.neg_scale, self.cfg)
|
|
|
|
|
|
|
|
class PerpNegGuider:
|
|
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
|
|
return {"required":
|
|
|
|
{"model": ("MODEL",),
|
|
|
|
"positive": ("CONDITIONING", ),
|
|
|
|
"negative": ("CONDITIONING", ),
|
|
|
|
"empty_conditioning": ("CONDITIONING", ),
|
|
|
|
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
|
|
|
|
"neg_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
RETURN_TYPES = ("GUIDER",)
|
|
|
|
|
|
|
|
FUNCTION = "get_guider"
|
|
|
|
CATEGORY = "_for_testing"
|
|
|
|
|
|
|
|
def get_guider(self, model, positive, negative, empty_conditioning, cfg, neg_scale):
|
|
|
|
guider = Guider_PerpNeg(model)
|
|
|
|
guider.set_conds(positive, negative, empty_conditioning)
|
|
|
|
guider.set_cfg(cfg, neg_scale)
|
|
|
|
return (guider,)
|
|
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
|
|
"PerpNeg": PerpNeg,
|
|
|
|
"PerpNegGuider": PerpNegGuider,
|
|
|
|
}
|
|
|
|
|
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = {
|
|
|
|
"PerpNeg": "Perp-Neg (DEPRECATED by PerpNegGuider)",
|
|
|
|
}
|