1 changed files with 177 additions and 0 deletions
@ -0,0 +1,177 @@
|
||||
{ |
||||
"cells": [ |
||||
{ |
||||
"cell_type": "markdown", |
||||
"id": "0b15b939-593a-4ccc-89bd-0cee09fe2f12", |
||||
"metadata": {}, |
||||
"source": [ |
||||
"# Python Code Summarizer\n", |
||||
"\n", |
||||
"The Below code will summarize the python code and example it in details which can help codes better understand a forigen code." |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "8dcf353c-e4f2-4ce7-a3b5-71b29700a148", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"# Imports\n", |
||||
"from IPython.display import Markdown, display\n", |
||||
"import os\n", |
||||
"import openai\n", |
||||
"from dotenv import load_dotenv" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "111cf632-08e8-4246-a5bb-b56942789242", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"load_dotenv(override=True)\n", |
||||
"api_key = os.getenv('OPENAI_API_KEY')" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "e4f5376f-5e6f-4d75-81bf-222e34bfe828", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"def read_code(**kwargs):\n", |
||||
" \"\"\"\n", |
||||
" You can pass two types of key word arguments to this function.\n", |
||||
" code_path= Path to your complex python code.\n", |
||||
" code= Passing raw python code.\n", |
||||
" \"\"\"\n", |
||||
" code_path = kwargs.get('code_path',None)\n", |
||||
" code_raw = kwargs.get('code',None)\n", |
||||
" \n", |
||||
" if code_path:\n", |
||||
" with open(code_path, 'r') as code_file:\n", |
||||
" code = code_file.read()\n", |
||||
" return (True, code)\n", |
||||
"\n", |
||||
" if code_raw:\n", |
||||
" return (True, code_raw)\n", |
||||
"\n", |
||||
" return (False, None)" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "00743dac-0e70-45b7-879a-d7293a6f68a6", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"# Model Prompt\n", |
||||
"system_prompt = (\n", |
||||
" \"You are a helpful assistant. The following input will be a Python code snippet. \"\n", |
||||
" \"Your task is to:\\n\\n\"\n", |
||||
" \"1. Summarize the overall purpose of the code.\\n\"\n", |
||||
" \"2. Explain the code line by line, describing what each line does and why it's written that way.\\n\"\n", |
||||
" \"3. Provide reasoning behind the code structure and logic to help novice Python developers understand the concepts better.\\n\\n\"\n", |
||||
" \"Use Markdown format in your response. Make the explanation beginner-friendly, using code blocks, bullet points, and headings where helpful.\"\n", |
||||
" ) \n", |
||||
"# In a plot twist worthy of sci-fi, this prompt was written by ChatGPT...\n", |
||||
"# to tell ChatGPT how to respond. We’ve officially entered the Matrix. 🤖🌀" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "ed7d2447-32a9-4761-8b0a-b31814bee7e5", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"\n", |
||||
"# Guess where I got this code from :)\n", |
||||
"code_line = \"\"\"yeild from set(book.get(\"author)) for book in books if book.get(\"author\"))\"\"\"\n", |
||||
"is_code, raw_code = read_code(code=code_line)\n", |
||||
"\n", |
||||
"if is_code:\n", |
||||
" user_prompt = raw_code\n", |
||||
"else:\n", |
||||
" print(\"Invalid Arguments\")" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "d74a1a39-1c24-4d4b-bd49-0ca416377a93", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"def messages_for():\n", |
||||
" return [\n", |
||||
" {\"role\": \"system\", \"content\": system_prompt},\n", |
||||
" {\"role\": \"user\", \"content\": user_prompt}\n", |
||||
" ]" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "df6c2726-d0fb-4ab6-b13b-d047e8807558", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"def summarize():\n", |
||||
" \n", |
||||
" response = openai.chat.completions.create(\n", |
||||
" model = \"gpt-4o-mini\",\n", |
||||
" messages = messages_for()\n", |
||||
" )\n", |
||||
" return response.choices[0].message.content" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "8425144c-595e-4ad6-9801-3e8778d285c4", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"def display_summary():\n", |
||||
" summary = summarize()\n", |
||||
" display(Markdown(summary))" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "744bffdd-ec3c-4b27-b126-81bf3e8c8295", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"display_summary()" |
||||
] |
||||
} |
||||
], |
||||
"metadata": { |
||||
"kernelspec": { |
||||
"display_name": "Python 3 (ipykernel)", |
||||
"language": "python", |
||||
"name": "python3" |
||||
}, |
||||
"language_info": { |
||||
"codemirror_mode": { |
||||
"name": "ipython", |
||||
"version": 3 |
||||
}, |
||||
"file_extension": ".py", |
||||
"mimetype": "text/x-python", |
||||
"name": "python", |
||||
"nbconvert_exporter": "python", |
||||
"pygments_lexer": "ipython3", |
||||
"version": "3.11.12" |
||||
} |
||||
}, |
||||
"nbformat": 4, |
||||
"nbformat_minor": 5 |
||||
} |
Loading…
Reference in new issue